Fused Multiple Graphical Lasso
نویسندگان
چکیده
In this paper, we consider the problem of estimating multiple graphical models simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network for the patients with mild cognitive impairment (MCI), and a brain network for Alzheimer’s patients (AD). We expect the two brain networks for NC and MCI to share common structures but not to be identical to each other; similarly for the two brain networks for MCI and AD. The proposed formulation can be solved using a second-order method. Our key technical contribution is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on this key property, a simple screening rule is presented, which decomposes the large graphs into small subgraphs and allows an efficient estimation of multiple independent (small) subgraphs, dramatically reducing the computational cost. We perform experiments on both synthetic and real data; our results demonstrate the effectiveness and efficiency of the proposed approach.
منابع مشابه
Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity
Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g. using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with conf...
متن کاملSupplementary Web Materials For “Fused Lasso with the Adaptation of Parameter Ordering in Combining Multiple Studies with Repeated Measurements”
متن کامل
On the Complexity of the Weighted Fussed Lasso
The solution path of the 1D fused lasso for an ndimensional input is piecewise linear with O(n) segments [1], [2]. However, existing proofs of this bound do not hold for the weighted fused lasso. At the same time, results for the generalized lasso, of which the weighted fused lasso is a special case, allow Ω(3) segments [3]. In this paper, we prove that the number of segments in the solution pa...
متن کاملThe group fused Lasso for multiple change-point detection
We present the group fused Lasso for detection of multiple change-points shared by a set of cooccurring one-dimensional signals. Change-points are detected by approximating the original signals with a constraint on the multidimensional total variation, leading to piecewise-constant approximations. Fast algorithms are proposed to solve the resulting optimization problems, either exactly or appro...
متن کاملExact Hybrid Covariance Thresholding for Joint Graphical Lasso
This paper studies precision matrix estimation for multiple related Gaussian graphical models from a dataset consisting of different classes, based upon the formulation of this problem as group graphical lasso. In particular, this paper proposes a novel hybrid covariance thresholding algorithm that can effectively identify zero entries in the precision matrices and split a large joint graphical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 25 شماره
صفحات -
تاریخ انتشار 2015